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ABSTRACT

This report documents the results of a study of the structural damage
‘potential of the sonic boom. The wu.l. was sponsored by NASA, under Grant -
Number NGR-37-002-051.

The project was directed by Dr. R. L. Lowery, Professor. The major
part of the work was done as a doctoral dissertation by T. V., Seshadri
which is documented in Appendix A, He was assisted at various stages by
Jack Bayles and Reid Kearl, both of whom are doctoral candidates. The

field tests on windows were performed by Edward Orloski, M. S. candidate.



SUMMARY

The response of glass windows to sonic boom excitation is of prime
importance since failures of this type may ultimately prove to be the
limiting factor to the overland flight of the SST. The failure of a
glass window is sudden, often spectacular and seldom opénvto interpre-
tation.

The prediction of the response of a specific window to a given
boom is complicated by the mechanical and acoustical coupling existing
between the window and the remainder of the structure in which it is
mounted., Since there exists an almost infinite array of structural con-
figurations, it would be impossibie to analyze each of them separately.
In much of the earlier work, howcver, certain trends have been established
which seem to indicate that a "worst' case of window response might be
established as the greatest upper bound for all structures.

The primaryvbbjective of this study_is to determine the character-
istics for the hypothetical '"most critical' structure.

Several different problem areas are involved in this search.

1. How can the structural systems be reduced to easily used

'lumped parameter representations?

2. What are the damping mechanisms of the structures and what

are reasonable values for the coefficients?

3. In what way does the number of degrees of freedom of motion

effect the severity of the response?

4. How does the predicted response compare with available



field data?

A lumped parametér modeling system was derived in which the window
or flexible panel can be replaced by a lumped mass and an equivalent
spring'and‘damper. In this particular model the deflection of the sys-
tem is preserved as its damping factor and natural frequency. The
lumped parameter model agrees mathec..tically with the continuous model
for first mode response for simply suvported plates. This was consi-
dered acceptable even though the "I Jave excitation excites higher har-
monics in the plate. The most critical responseICOnfiguration must coin-
cide with a displacement mode of the window; therefore, the fﬁndamental
mode is by'far the most critical omne inkrelationship to coupling with
other partsbof the system.

Damping mechanisms of meChano-acoustical systems were studied in
three different ways:

1. Analytical study of damping of Helmholtz resonators and rec-

‘tangular panels,

2. Experimental measurements of damping of a small acoustical

resonator.

3. ’Field measurements of 99 storefront windows, as mounted.

Although the agreement between.theory and experiment ié good for
the Helmholtz resomator it is in error for windows because of the effects
of ﬁechanical friction in the mounting. The damping studies nonetheless
serve the purpose of identifying a rcasonable value for the damping‘
coeff;cient for use in the equivalont lumped parameter model.

The critical structural configurations for sonic boom response were
‘isolated by first studying the general transient\regppnse épectra of
undgmped'systems having varying degrees of’freedom and then by finding

the structure that most closely fits the equation. The severity of
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response appears not to be related to the complexity of the system and a
system having two degrees of freedom can be considered the tritical case.
The various structural variations were modeled both on the digital com-
puter, using a predictor-corrector approach, as well as on an analog
computer,

The comparison of a limited am..nt of field data, recorded at
Edwards Air Force Base, with theor.iical values was undertaken but the
results were somewhat inconclusive  The measured strains are lower than
the calgulated values but not to the extent that the calculations can not
be used in_establisﬁing the greatest upperbound of response. Part of
the difficulty in modeling the test structure at Edwards Air Force Base
was in the unusual construction. The test room was a two-car garage in
which a large window was installed in place of the door. Exposed insula-
tion bats were also installed in the room making the exact determination
of boundary conditions very difficult, The modeling techniques pre-
sented here will probably prove tu bc much more accurate in test con-

figurations in which the properties are more easily controlled.



CONCLUSIONS

The conclusions reflecting the major objectives of this study are
listed below. Additional conclusion- and recommendations are listed in
_Appendix‘A.

1. The most critical linear configuration for response to the sonic
boom is a room having one large window and a properly tuned port. The
largest magnification factor to be expected for an actual window instal-
lation considering realistic damping values, is 7.0. These conditions
could exist in a room having a volume of 9,000 cubic feet, a window with
dimensions of 10 feet by 8 feet by % inch and an opening of 14 square
feet; proportions commonly found iu wmany small stores and businesses.
Considering a design factor of 2.5 iLi.’ maximum allowable area of l/4 inch
glass'is about 60 square feet indicating that at least 8 out of every
1,000 windows would fail. This estimate is pessimistic on one hand
since the dynamic strength of glass is often greater than the static
strength. However, no consideration is given to surface flaws which
tend to develop after glass has been‘installed for a period of time.

2. A 1argé room having a flexible unit roof and one large window
can exhibit a magnification factor of 3.5 for the response of the win-
dow. |

3; A dampiﬁg factor of .03 is répresentative for store front win-
dows.

4. The theoretical damping factor of a plate in an infinite

baffle is a function only of its aspect ratio. The reradiation damping,
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however is insignificant when comy.... . to the damping produced by edge
effects and by mechanical 'friction.

5., Large windows must be driven well into their nonlinear regions
before failure occurs. Under these conditions'a hardening "nonlinearity"

is manifested having the effect of limiting the maximum disPlac‘eﬁent.'
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CHAPTER 1
INTRODUCTION

The immediate problem confro ting the designers of the Supersonic
Transport is the structural damag. caused by thezsonﬁc booms. The
booms created by these planesvwill usually have an overpressure of
2.5 pbf and a period of 0.4 seconds, but during some maneuvers these
can be as high as 4 psf and 0.5 seconds respéctively. Several
controlled and uncontrolled flight tests conducted in the United States
and Canada prove the capability of the sonic boom in causing structural
damage either due to a too large an overpressure or to the repeated
exposure to booms,

In the flights over Washington, Ohio, Cedar City, Utah, and Ottawa,
Canada the sonic boom caused by pilots' errors shattered several
windows. The damage to the unfinished Ottawa terminal was estimated as
300,600 dollars. In the tests conducted in Oklahoma City one of the
showcase windows of the Kinney Shoe Store broke. There were reports of
nailvpopping, paint and plaster cracking due to the repeated applica-
tion of loads by the sonic boom. In the recent experiments by NASA at
the Edwards Air Force Base n‘cqntrolled flight shat;ered a glass window
in the U. S. Post Office and created cracks and broke another win&ow in
the same building. From the data obtained from these tests it is clear
that the overpreniu:e-ln a static logd’was not responsible for the

failure of glass as it vas only 10% of the wind load for which it is



designed. vThe buildiﬂg enclosures ...Lave as Helwholtz resonators and
drive the flexiblé members such as the window to high amplitudes,
especiélly when thé naturn1 period‘of'the window is equal to the
natural pgfiod of excitatiqn. 1t is theregore necessary to study the
response characteristics of acoustical networks for transient loads to
find ﬁhe‘maxxﬁdx response. In addition to sonic boom loads, this stﬁdy
wilt be useful in the response analysis of buildingbécructures subject
to other transient loads such as explosions, rocket launchings, gusts,
and‘blast~Ioéds.*

A building structure, because it is cémposed of several rooms,
inter-connecting hallways, doors and windo@s, is complicated to analyze
mathematically. It has to be reduced to an equivalent system which
adequately repteseﬁts the behavior of the original system. The
response of a dynamical system depends on the damping ratio of the
system. Every physical system possesses sgme energy dissipating
mechanisms. From the data obtained from the Oklahpma City tests it is
known that the pressure oscillations are not sustained for a long time.
Even though the damping ratio does not affect the response due to
transient loads as much. as it does the response to steady state, its
effect is pronounced in the former also. A damping ratio o£>S% could
reduce th§ maximax response by asvmuch,as 25%. Therefore in order to
find the trahdient response of acoustical networks the types of damping
pteséﬁt in them should be identified. The response is easily obtained
once the equivalent viscous damping ratio is known.

The maximax response of_aﬁy system depends on its components. By
suitib1y modifying them any desired response can be obtained. The

' component$ of an acoustical system are to be changed within practical



Limitéjand the critical system has be found. The maximax of this
system isrthé maximﬁm that can be b",wcted'for a given sonic boom type
input. Thus an upper bound for the response can be obtained. This is
vkryruséfﬁikin the‘dééigh of the components of the acoustical networks,
 ‘especia1Iy'che glass wiﬁdaws.

If'the deflection of the panel to the transient excitation is much
greater than the thl;kness, some refined theéries havevto be used to
find ﬁhe. dyﬂémic response.

In geﬁetal’the main objectives of this work can be summarized as:

1. To represent the building structures which are mecﬁaﬁo»
acbuntical’ay#tems by equivalent meéhgnical systems wﬁich
preserve the characteristics of the orlginal system adequately.

2. To identify the types of damping present in representative
buildingé and ﬁhus to estimate a lower boundffor,the net
‘equivaleﬁt‘viscous dampipg~rat16.

3. To find the maximax response of multi-degree of freedom
systems as a function of its parameters.

4, To find»the‘most éritical multi-degrge of freedom system and
thus to find a worst practical acoustical system.

5. To get an upper bound for the stresses in the glass windows
for a given sonic boom type input using both 1inear and non-
linear theory, and |

6. To compare the @axim‘x response calculated with the experi-
méntﬁlrdacn obcained from tests conducted at the Edwards Air

_ Force Bage.



CHAPTER 11
LITERATURF REVIEW

Several authors have discussed i. general the damping ratio of
Helmholtz resonators, the transient response of linear systems, resona-
tors and some specific non-linear systems. But no literatﬁre is
availaﬁle on thé general design of acoustical systems subject to sonic
booms. |

Rayleigh (28) has described the various loss mechanisms associated
with a fesonator such as radiation, viscous and heat conduction. He
concluded for low freqﬁency the heat gonduction losses are negligible.
Samulon (30) has analytically found rhe losses due‘to'the-viscbsity of
the air in the neck of the resoﬁntor- rHe~found that the viscous losses
were the main loss mgchanishs for oy narrow necks. He assumed the
flow of air in the neck was similar to the flow in a pipe. 1Ingard (12)
investigated the near field of a resonator exposed to a plane wave
using the acoustic equation and concluded that the damping due to heat
~conduction was negligible. Mangiérotty (19)_has derived expressions
for the acous;ic radiation damping of‘avpanel vibrating in its funda-
meﬁtal‘moda. He assumed the panél to be a piston vibrating In an
infinite baffle.k For a uniform dauping pressure he found the:damping _
was depeﬁdent only-Oﬂ Ehe dengity of thg surrounﬁing médium and the
aspect ratio of the panel for a given material. The assumption of

‘non-uniform damping pressure does not change the results very much



especially for panels very small compared to the wave-lengtﬁ.
Fitzgerald (10) has:discussed the internal damping of cérémics and
glass using the hysteresis curves. He concluded that the internal
damping of them was comparable to that of the metals. Marin and
Rindone (20) have givén experimental results for the hysteresis damping
of glass rods. The déﬁping_was‘given in terms of the quality factor Q.

-Seyeral aﬁthofs (35, 11) have Qtudied the transient response of
simple oscillators., There is little literature on the transient
_response of multi-degree of freedom systems., The work so fér done has
“been confined, due to mathematicél difficulty, to particular cases only.
Hence, there is great need to solve this problem.in general. Many
vinvestigators studied the transient response of continuous systemé such
as beams and plates. Crocker (7) has found analytically and experimen-
tally the transient response of panels to several forms of’excitatidn
pulses. He has arrived at the same conclusion that the fundamental
mode con:ribution adeqﬁately feprésented the total response fbf
displacemént.

The work on the general transient response of a non-linear system
is also limitgd; Fung and Barton (1l1l) havé'discuséed the effect of
>han-li§earity in a single degree of freedom system. kThey salved‘the
 '§ro$lemyin‘term8 of,the,loadiﬂg,raﬁin, that iébthé.ratib of the loads
kin;ihe‘liﬁeér‘andithe nén—iinéar system to producévihe same;déf1e¢tian;
Ergin (9) found the response of a simple non~1inear oscillator by a
ﬁi-lihﬁar‘#pproximatiun,mathod.v The load?defléCtiun curve was assuméd
té be madé Qp of‘tﬁo‘sétaighﬁ lines éuch_that the mead efror sqdargd

was arminiﬁum.’_rhomsan (35) has found the shock spectra of an elasto-

. plastic non-linear system and has concluded that the response of this

' system was less than the corresponding linear system.



In order to determine whether a sonic boom will cause failure of
lass windows the failure mechanisms of glass should be known,

Kornhauser (15) has discussed the impact sensitivity method to predict
the structural failure due to elastic and plastic deformation. Parrot
(25) in his experimehtal'study on the failure of giass due to sonic
booms‘has-shqwn that the failure depended on many variables sucﬁ‘as
the shape, size, edge festtaints, age and imperfections., It is diffi-
cult to evaluafe the effects of all these variables separately. The
fatigue of glass was experimentally studied by Baker and Preston (1).
They concluded that there was conéiderable difference between metal
fatigue and glgss fatigue. In fact, according tovthem the endurance
1imitvof glass was only a little less than the normai breaking stress.

When the panel size and the load increase, the deflection is much
greater than the thickness and thg linear theory is no longer valid.
»So»a static and dynamic analysis of plates with large deflections have
to‘be,made; Kaiser (ik)Lhas discussgd the reduction of the non-linear
diffe?enﬁial equations to a system of linear equations. He solved oniy
for a partiéuiér case of a:parameter and did not discuss in great deta11 
‘the convergence of the solution. Wang (38) continued the work of
Kaiser and:solved the sys:em of linear equations using the‘reiaxation
and succeséiﬁe approximétion méthods. Herrmann and Chh((S) have
stddied the steadyvstate vibration of large platés. Theyvfouné that
;the period decreased'very rapidly with the amplitude cfqucillation.
Eisley (8) has diécuéséd the free énd éteady state forced vibrations of
thin;plateé.v He ueéd‘the Galerkin p:ocedure to sql#é the.Von4karman
equétions‘épéuming a gingle,que'represéntation. The response was

jsiﬁilaf td that of a simple oscillator with hard springs.



The literature on the transient response of buildings subject to
sonic boom input for general cases is scarce. The work done so far is
mostly experimental. The theoretical work done 6n Helmholtz resonato?s
explains the resonance effects in building‘enclosures but does not deal
with the stresses in the flexiblg structures such as windows. Simpson
(31) analyzed a simpie Helmholtz resonator for transient loads and
cbncluded that for dimensions smaller than the wave-length, the resona-
tor could be assumed as a lumped system, Reddy (29) analyzed the
transient response of a coupled #esonator. He was mainly interested in
the pressure magnification. For a favorable combination‘he obtained a
magnification as ﬁigh as 20, Whitehousa (39) found the response of a
panel couplgd to a resonator experimentally. He concluded that the
total reSpdnse could be represented by the fundémentai'mode contribu-
tion., In all the abéve work only some particular acoustical systems 
Weié analyzed. They do not necessarily represent the critical cases.
Further, the damping ratios used were arbitrary. Even though the
deflection was muéh greater than rhe ghickness, linear- theory was used.
 'It ié theref§re necessaryvto find the maximum upper bound for the

rspreéées ﬁhat'can be attained by a window subject to a given sohic boom
: tak;ng into accﬁunt the.damping,vnumbér of degrees of freedom, the

'nbnélinea::and»membrana effects.



CHAPTER 111
MODELING

>The initial task in the analysis of a structure for static or
dynamic loads is to reduce it to a form in which the desired results
can be obtained with a reasonable amount of analytical work. This is
necessary because the physical systems are too complicated gsuch as the
acoustical system with many rooms, interconnecting hallways and windows)
to analyze mathematically. The complexity increases if»the dynamic
response is required because it is a fﬁn;nion of both time and sbace.
Usually ﬁhe'mQSs, flexibility and energy dissipation of a,physical
system are distribute&. Certain‘iimplificéﬁions have to bé made before
a ma:hemati¢al analysis is possible. The simplifications should not be
~such as to completely alter the characteristics of the systeh. ~The,
mpdei'should adequately represent the dynamic responsé of the structure
for the pnfticuiaf load and at the same time tﬁé mathematical analysis
should not be strenuous. This is the basic principle involved_in
@ddgling.

A vibrdting'panelrhas infinite dégrees of freedom and its equation
of ﬁdtion 19 represented by a partial differential equation. The
resulﬁing'response of the panel fbr any logd is the sum of'the contri-
bution of all the.modes.-'ln order to_repr;sent the panel as a discrete
system the cbntribﬁttén bf each mode to the particular problem should

be known,l'Whitebouse (39)‘has shown that, for a simply supported panel



~subjected to an N- wave excitation, the fundamental mode contributes to
>99.7% of the displaéemént and 97% of the stress. This justifies; for
engineering accuracy, that a panel can be adequately represented by its
fundamental mode response. The equivalent mass, stiffness and damping
ratio are found by equating the kinetic, potential and damping ener-
gieé. “The equivalent area of the model can‘be foﬁnd assuming the same

static deflection.

Elements of the Model of a Panel

Equivalent Mass

For a simply supported panel which is uniformly loaded and
vibrating harm@nically the deflection in the fundamental mode is given

by (37),
w(x,y) = Wy Sinﬂx/a Sinny/b « £(t) (3-1)

where wb‘ié the deflection at the center.

The kinetic enerxgy of the panel is

. , -
v = % pug2h f sin? X 51n? ¥ ax dy (3-2)
. VYoVg a b ;
. |
4 ‘ .

,,  where'&(xgyj - tbe yelo;ity at aﬁy point on ihe surface of the panel,
vand‘k, = ‘ . : _
p -jmasskdédﬁity of the panel
In of¢§f to have the s;ﬁa kinetic eneigy the mod21 shou1d have a

- mdssfmeq ﬂhigh is oﬁevfnufth?:havmass of the panel.
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Equivalent Stiffness

The equivalent stiffwness ig obtained from the potential energy.

For a panel vibrstiag iw ite fundamental mode ,
r Ty m v ,
ovavo a b :

where q 1s the gradu&ily applied pressure load. The load-deflection
relation 1s linear for small deflections and w the deflection to a
pressure q can be represented by

q = kw (3-5)
where k is the stiffness of the panel expressed as

6 2 2
w 0D (a? + b?)

K
16 a% b4

(3-6)

On substitution of this in the integral and integration between the

prescribed limits yields,

n4 p (a2 + b2)? . w &

PE = RS W, (3.7)

The equivalent spring constant ke is obtained by equating the

q
potential energles. This gives

L 3-8
eq 4 g3 b3 ( )

With this keq and Baq the naturael frequency of the model ig the same as

the fundamental frequency of the panel.

Equivalent Damping Ratio

The incremental damping energy is given by

dE w C w dw. (3-9)



i1

where C == damping factor
W velocity and
W = displ&cement‘

For a simpiy-suppatted panel.Vibtacing in its fundamental mode

Emc »Qyoz T/h (3-10)
where T-#>period. |
| fhe damping‘enérgies of’che model and the panel are equatéd_which
yields
| °e§ @ Cl4 (3-11)

Equivalent Area

It is assumed that the force im the single degree of freedom model
is in the form of a uniform pressure acting on a certain area. This
assumption 18 valid as far as sonic boom pressure loadings on the

windows 18 concerned. The area can be found by preserving the static

deflection,
16 ga“ b4 e p * Aeq 4 o3 b3
0 p (a2 + be)2 14D (a2 + b2)2 (3-12)
4
Aig ™oy = & (3-13)

’

v The‘panel has thus been replaced by a single degree of freedom system
whiéh has the same btatic dafiectiuu. natural frequency, kineﬁic,
pbnentihl_nnd daﬁpins‘enargiaerna the.fundamental mode of the panel.
1t 18 to be seen whe:har~£his'model ndeqﬁatgly repteseﬂts the funda-

mental mode dynamic rgsﬁonsexof the panel £dr;a11_16ading conditions
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especially the transient,

The eduaticn of motion for the single degree of freedom model is

Mg ¥+ keq = p(t) Aoq : o (3e1)

Since the natural frequency is preserved, the equation (3-14) can be

written as,

s &

+ 0 xw =S o)+ A (3-15)
“2m
where A and m correspond to the panel.
Comparison of Response of Panel and the Model
The impulse reapohse h(t) of a simpiy supported panel is given by
(3-16)

h(t) = “??lm Sin Wygt

th

where M, = the generalized mass in the rs*" mode and

W, = the rath

- ‘natural frequencyf

For any other input the response can be found from the convolution

integral
x (t) mh (¢) * £ (¢) = Jt h (e -¥) £ (y) dy (3-17)
or in terms of ggnertliséd dispitcémahts
: tba ~
are (8) = | ff £ (P b, (t-§) 8 (x,y) dx dy d (3-18)
o MOV O’

where § is the modal function. For a simply supported plate, the mode

function is sinusoidal and 4y, represents the center deflection.
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Step Lnput

a. Panel,
1f the load consists of a suddenly applied pressure

£ () mpyt g0

(3-19)
=0 t<0 '
The response in the fundameﬂtél mode 18 given by
t ba
a;,(t) = j‘jf B Stn wy) (c-9) SinT% s1aTL dxdyy (3-20)
Huwn
w188 1) Cos ut (3-21)
ﬂzmmz _ ’
b. Model.
The equation of motion of the model for a step input is
X+ o? xom 16E (3-22)
The solution of this, obtained using Laplace Transform is
x (£) w: 168 1 - Cos m{] (3-23)
1 2ma? 1
which is exactly the same as that obtained for the plate.
- Impulse
The force is represented by
F(t) = 6(t) « F | o (3-20)
The response of the plate from (3-18) is
, “‘1-1“) - .-1..'.:’-?;-. Sin wt : | (3-25)
2w 5 3 |

" The iolutidn of the équntion of motion of the model for an impulse
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fnput yields an identical result.
It can be shown similarly that for a steady state sinusoidal load

of F Sin at the solution for both the panel and the model is

 x(t) = 1’6;‘ [ 21 2] Iitn oL - %Sin w’t]

The'response for a cycle of sine pulsé can be found by superposing on

(3-26)

the aﬁove;result the response due to a negative force for t > T.
Hence the model exactly régresents the fundamental mode response
of the panel for steady state qr:transiént ioads. The elements of the

model are summarized in Table I.

TABLE 1

ELEMENTS OF THE PANEL AND ITS MODEL

Element Panel Model
Mass - m /b
| | . |
Stiffness b (a2 + b2) n®D (a2~+:b2)2
; 16 a3 b3 4 a3 b3
‘Damping factor c .
Damping ratio ¢ e
R ~ab (4/m2)ab
‘Natural frequency |M°D (a2 4 b2)°  [nfp (a? + b%)
e “ madpl madbd



15

vThe He lmholtz Resonator

_ Since it has been~proﬁed from several sonic boom tests that
ordinary 5uilding siructures behave as Helmholtz resonators, it is
therefore possible to predict the respoﬁse of mechano-accustital
networks to SOniéhbooﬁ ﬁype inphts. In general the sound field of 4
resonatd: cin be repregented only by the acoustic equation. This is a
partiél differéntlni equation similar to the equation of motion of a
cont inuous system; Whenuthg dimensions of the‘sttuctufe are small
compared to the wave length the behavior of pressure pulse can be
described by a lumped parameter-épproaph. JFor small néck areas the
‘compressibility‘of air can be‘neglectgd; Since in the case,of sonic
boom éxcitgtion the wave length is of the ordet.okaOO to 400 fegt,
most of the rooms have dimensions much less than the wave length. The

lumped parameter approach is valid in those cases. Essentially, the

air in the neck behaves as a mass and air in the cavity as a spring.
Mass 5

The mass in the simple model will have the same mass as that of
the air moving back and forth near the neck. To account for an addi-
tional inertance in the‘neck,ka correction factor has to be added to

the length.

L, » L + 1-45 ‘,A/ﬂ | (3-27)

" where A is the area.df'the neck.4
Stiffness

The stiffness of the model is the same as the stiffness of the



Figure 1, Lumped Model of
: ’ ‘thé,Pane; '

' Figufé 2; _ﬂélmholtz Resoﬁatot hna;Ité Eodel»

16
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cavity. Since the changes take place suddenly, adiabatic expansion
and compression are assumed. From the adiabatic pressure-volume

relation
'ap.'-xvgdv' B o o (3-28)

Thevspring constant which is defined as force per unit displacement
is therefore given By,

kmpcial v, (3-29)
where ¢ = gpeed of sand‘
The equitibn of motion of such a modelrwill be

2 .
X = p(t) ‘A (3-30)

p'A‘Le'il pe
: v

where c “;E“ represents the natural frequency of the system.
_ \’ g ;

The pressure chahgg inside the cavity is also maintained because
‘the chéngé in pressure 1§ s linear function of the change in volume 6r,
if the area is constant, change in displacement.

Usually 1t is necessary to study the case of a panel coupled to a
Helmholtz resonator because this reptesents~a room with a window. The
mathematical model will be a two degtée of freedom syktem as shown in
3 Figure 3. The eiementu of the model can be easily calculated from the
foregoing analysis. Rt
- e From the adiubatic relation the pressure change in the cavity is
”propottioﬁul to the chtnge in volume.

Ch;nge in volume for the syatem is given by,

dv “"1 "1 jf *’o sm X sin «‘;2 dx dy e “ (3V-31)v
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X ST : m,~wvw-m2'W\Ar§

Figure 3. A R@sonator with a Panel and Its Model
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‘Pigure 4. biapl&aement in the Coupled System and Its Model
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=Ap X, -, o4 ab /m? (3-32)
For the model,
dV mAyx) -w * 4abm? (3-33)

The pressure in the cavity is the same both in the system and the

model because the volume changes are the same.



CHAPTER 1V
_DAMPING MECHANISMS IN MECHANO-ACOUSTICAL NETWORKS

Evgry physicnl system possesses some forms of damping. The
maximax response of such a system depends on the damping ratio. 1In the
'iptécéding chapter continuous systems were replaced by'discrete systems
but without the knowledge of the actual damping ratios the modeling is

incomplete.
Losses in a Helmholtz Resonator

The loss mechanisms in a Helmholcz.resonator can be classified as
a. viscous losses

b. radiation losses

c. heat conduction losses and

d. other'losses such as mekhanicai'wall vibrations and gaseous

qbsorpcion due to thermal relaxation.

Viscous Losses

The viscous loss is due to the friction to the ait £low in the
"hecks’ The flow of air ‘in the neck can be assumed to be similaf to the
flow of fluids in a éipe. 1€ ﬁhe neck is not circular therg will be
additional losses due to the sharp cofners. In order to calculate the
viacous losses the Velocity of air in the neck should be known.

To Eind the damping ratio due to the boundary layer losses the

20
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flow over a plane surface is studied. Let the fluid above the plane
(y = 0) be made to qcciillté by‘l-fotcevF Coswt per unit vertical area.
Becaﬁae of the friction between the fllijd and the surface the velocity
at the:suffaoe is Set;innd there is A'thiﬁ bouhdary layer. (Figure 5)

2 The.GQuption of motion is oﬁtaineﬂ considering the fluid between

the twb_layern y and y + dy.

0 &Y 4t ces e w N (4-1)
ayz Bt

where f is the force per unit mass. This equation can be solved by
assuming :ﬁe7ve1acity to be a harmonic function of time. The general

solution is

u (y,t) = Yy Ein wt - e "'[%:' y’sm"(wt -"% . y;] (4-2)

where u, is equal to £/w.

, W ; b ] ; ;
For values of ;; y >> 1, u(y,t) is very nearly equal to_uOSinwt.

Therefore when %b %'>> 1 where D is the diameter of the tube consid-
ered, it can be assumed that the plate is bent in the form of a tube
with little error.

The exprenaibn for the velocity can be obtained by raplacing y by
(R;y) ih (4-2). Siﬁce u(y,t) is very nearly equal toiu081ﬁwt every-

vhere, the root mean squared velocity u is Yo ,

~ Consider the shear force between two concentric cylinders
(Figure 6), : | _
| Fe2fyLr ' . (4-3)

where T 18 uﬁa ahpir stress,
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Y+dY

y - F cOs it - dydz

X

Figure 5. Boundary laver in a Flat Plate

?igure 6. Velocity Distribution in a Pipe Flow



The power with which the two adjacent layers move relative to each

other is given by

P-jZT‘r)_zLyé-\-j-du (4-4)
. dy
The average power over a period of vibration is
t R
- 1 r " du 2
PaTJOdt OZny;U..(dy) dy (4-5)

1t can be shown (30) that for the fluid making sinusoidal oscilla-
tions the damping factor C is given by,

CmP / um2 (4-6)

The use of this relation after integrating (4-5) yields

. -28R
cm(BR-L1tel ) .onpt (4-7)

where p = |4
2u

When B8 R >> 1 which {s true for practical cases this reduces to

C=2n MLBR (4-8)

The corresponding damping ratio { is given by

o [ U -
(R Y, (4-9)

where f = natural frequency of the resonator

A = grea of the neck.

Radiation Losses

Another source of loss near the neck is due to the energy lost by
radiation to the atmosphere. This dissipétive energy can be found by

assuming the mass of afr in the neck of the resonator to be a piston
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vibrating in an infinite baffle. The acoustic impedance of such a

piston is (2),

L= 39% 1o lZka) by 0700 gy (2ka) (4-10)
Tia ka 2k néal '
where U = volume velocit}

a = radius of the piston and

k = the wave number w/c

The resistive component of the impedance which is responsible for

the energy loss is given by

B Poc |, J1(2ka) (4-11)
U a2 ka
3.3 5.5
where Jy(2ka) = 2k&8 B ka 32 ka® . ___ (4-12)
2 16 384

Since k, the wave number, is less than 1 for low frequencies (as

~ is the case for excitation by sonic boom) ksa5 and higher powers can

be neglected. Then,

2
%n Dg;k (4-13)

Since the damping force is proportional to the velocity the
resulting damping is of the viscous type. The damping force is given

by

: 2
FmPotkm a L ymcg (4-14)

pis
where Cyq is the damping factor.

This results in,

{rad = £A (4-15)
2cL,

where _rad is the radiation damping ratio.



fteat Conduction Losses

According to Rayleigh (28), the heat conduction losses can be
included in the expression for viscous losses by using a modified
coefticient of viscosity. For air, this results in a damping ratio for

heat conduction losses as

Che = 0°265 ,E? (6-16)

The theoretical damping ratio of a Helmholtz resonator is there-

fore given by

’ L] £-A_.— . -!—- . E.:—._ -
Cnee = 57 * O s\/Af +0 265"1\f (4-17)

Figure 7 shows the damping ratio of resonators as a function of

frequency for different necks.
Experimental Work on rielmholtz Resonators

From (4-17) and Figure 7 it is clear that for small necks the

viscous and heat conduction losses are important and for wide necks

the radiation losses predominate. For a medium sizc neck both losses
contribute almost equally. 1In order to have all these three types of
necks, neck diameters of 1.22", 2.9" and 6.5" were chosen, Thg resona-
tor had an internal digmeter of 13%" and had a cylindrical shape. TIts
height , hence the voluﬁe, could be changed by moving the wooden plugs
which formed the bottom of the resonator. The bottom was sealed well
by placing an aluminum plate with U-ring between the wooden plugs. The
resonator was excited by a few pulses of sine wave using a tone burst
generator. This was used because the natural frequency and damping

ratio were calculated using visua- -hservation and thus the repetition
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of the trace was necessary. The pressure oscillations inside the
cavity were measured by a crystal microphone. The damping ratio was
calculated using the standard log decrement technique. The block

diegram of {nstrumentation is illustrated in Figure 8.

Experimental Results

The logarithmic decrements of resonators with necks of diameter
1.22" and 2.9" agree very well with the theoretical values for all
lengths and volumes tested as indicated in Figures 9 and 10. The
slight discrepancy can be attributed to the lack of accurate experimen-
tal technique to measure the damping. An error of even 10% could be
made i{n counting the number of cycles. The 1/d ratic ot these necks
were greater than or nearly equal to unity.

The experimental data for a 6.5" dlameter neck differ considerably
- from the theoretical values (Figure 11), The measured damping ratios
are much less than the calculated values.’ The 1/d ratio of the necks
tested were less than one. This means the end effects should have to
be taken into account in the calculation of the damping ratio. Further
‘the diameter of the neck was comparable to that of the resonator, the
whole system behaved more like a pipe with a change in cross-section
than a resonator with an orifice.

The measurvdbnatural frequencies for all combinations of neck
areas, neck lengths and cavity volumes agree very well with the calcu-

lated values as shown in Figure 12. 1In general, the measured

frequencies were less than the calculated undamped frequencies.
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Other Observations

1t was found that the damping was not linear whenever the inpdt
signal exceeded a certain limit. Thig limit was different for differ-
ent combination of necks. The reason for this is when the input signal
is increased the velocity of air in the neck is increased producing
turbulence and jet effects (33). The net result is an increase in the
viscous damping ratio and hence the total damping ratio. The reason
could be either that there is a critical velocity or a critical
Reynold's number above which the damping becomes non-linear.

From the response of the resonator for the pulse, the force at the
neck can be found. The maximum velocity of air in the neck is F/myw
where ,

F = Force

m = Mass of air in the neck

w w Natural frequency in rps

A careful experiment was mad: i one combination of neck area,
length, and cavity volume and the output signal above which the damping
became non-linear was measured irn r=rms of voltage. Assuming this
value is theoretically correct, the critical voltage for all the other
combinations of necks and cavities were calculated assuming (a) a
constant critical Reynold's number and (b) a constant critical veloc-
fty. The results are as shown in Figures 13 and 14, Even though the
results are not highly conclusive it can be said that the non-linearity
in the damping is due to the fact that the velocity of the air in the
neck exceeding a certain critical velocity rather than the Reynold's
number exceeding a critical value. Hence it is possible to find the

damping ratio for a larger pressure input by using a non-linear damping
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ratio which {8 a function uf the velocity ot the air in the neck.

Snet =0 1in * bn.1, (4-18)

) y (4-19)

a (v - v

n.l cr

The constant of proportiondlity and the index n can be found by a
few accurate experimental results, But these values may differ consid-
erably from resonator to resonator,

When the natural frequency of the resonator was about 130 cps a
peculiar phenomena was observed. The trace in the oscilloscope clearly
indicated pronounced beating. This beating was not due to the noise
level in the room which is concentrated around 120 cps, because when
the experiment was conducted outside the room which had the same noise
level, no beats were observed. Further, in the same room the beats
were found to depend upon the position of the resonator being predomi-
nate at quarter points and almost absent at the center of the room.
This indicates that the standing waves in the room might have caused
those beats. The frequency of the 202 mode for the room was 136 cps.
Since the room was nearly square (16'x15'x9') it is quite likely that
several modes have the frequency near 130 ¢ps and the room responds
strongly to the impressed sounds which are in the immediate vicinity
of 130 cps. The continuous VOrtexvshedding which causes the natural
modes to break cannot be attributed to the becats because no pipe-tone
was audible (33). The experiment has therefore to be conducted in a
room with a different size or in an anechoic chamber to determine

whether the standing waves are really the cause of the beats.
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Damping Mechanisms in the Panel

The losses in the panel are duevto

1. acoustic radiation damping

2. structural damping

3. other losses such as joint friction damping and support

damping.

Acoustic Radiation Damping

The acoustic damping resultg from the reaction forces of the
surrounding fluid on the radiating surfaces of a structure as energy is
transferred from the radiator into the fluid. (19)

From (4-13) the resistive component of the acoustic impedance of a
vibrating piston {n an infinite baffle is

2
p _ Pock (4-20)
Tl

For a uniform damping pressure,

b a
2 o
p = Pock” [ { u (x,y) dx dy (4-21)
2n JQJO

The velocity can be expressed in terms of the generalized coordinate g

zab
\ly.

K
Pot L4 ) ax dy (4-22)
oY

p - o

where ¢ Ls the panel mode functlon.

=

The damping force can be obtained by integrating over the area of the

panel which results in a damping (.. lor

2 b a

oock >

C = 207 fj ¢ (x,y e dy (6-23)
n ovo
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Vhe corresponding damping ratio is,

P "

b a 2
i \)
{ 'rj ¢ (x,y) dx dy J
oow Jodo
= — (4-24)
Llem b a t

Jr [ ¢ (x,y) dx dy
e

A

where m {8 the mass of the panel per unit area.
Once the modal function is known the contribution of the various
modes to the damping ratio can be obtained from (4-24). For a simply

supported panel vibrating in its fundamental mode { 1is given by,

C=3.686 x 107° %0 [F— a4 b, (4-25)
Pm VPp b @8

where p, = density (mass/volume) of surrounding fluid and

p_ = density (mass/volume) of the panel material.

m

For glass panels vibrating in air this reduces to
1 .
{ = 0-004618 (R + i (4-26)

. where N is the panel aspect ratio.

This theory predicts that ftor a given panel the damping ratio is a
function only of the density of the panel and of the surrounding medium
and not of the thickness. The damping ratio of glass panels for
various a/b ratios is plotted in Figure 15, The square pancl has the

least damping.

Structural Damping

The behavior of elastic bodies subjected to stress is generally

assunied to be ideal. The deflection of the panel is proportional to
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the applied load and when the load is removed the panel returns to its
original position. But in practical situations this is not true
bhecause of the internal friction of the material. If the material is
toaded over a cyile. the resulting load-deflection diagram will be as
shown in Figure 16 instead of the linear relation for an ideal case.
The area of the hysteresis loop represents the amount of internal fric-
tion or energy dissipated over a cycle of loading. For a vibrating
body this represents the energy dissipated per cycle. The shape of the
_hysteresis loop depends on the loading and the material. In genéral
the dissipated energy can be written as

Dmkon (4-27)
where k = constant of proportionality

g = the stress.

Only for the case of n = 2, (s the damping linear and the fesponse

~. equations are therefore linear. For other values of n, to reduce the

non-linear equations to linear equations, an equivalent viscous damping
ratio has to be found keeping the damping energies the same.

It is rather difficult to measure the material damping of plate
glass. Orloski (24) measured the decay rate of a vibrating Pyrex rod
and arrived at a material damping ratio of 0.026. This can be taken
as the representative figure for the plate glass as the damping

mechanism {s the same in both the cases.

System Damping

This involves the energy dissipated in various types of joints,
interfaces or fasteners. The complexity of these increases due to the

fact that the operating mechanism is coulomb friction. Therefore for
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Figure 16. Hysteresis lLoop.or the
Stress~Strain Curve
for Repeated Loading

the damping ratio of plate glass panels it is necessary to rely on the
experimental values.

Orloski (24) measured the damping ratios of several plate glass
windows in the downtown stores of Stillwater. Thv panel was excited
manually and the oscillations were picked up by a sensitive microphone
and recorded using a pen-recorder, The damping ratio was obtained
using the logarithmic decrement. He obtained a range of values from
0.01-0.05 for the damping ratio. The contribution to the damping by
radiation damping is only a fraction of the total damping. The main
damping mechanisms are the structural and joint friction damping.

A repregsentative figure of 0.03 can be taken for the regular size plate
glass windows.

Knowing the damping ratios at the neck and in the panel the

acoustic system is completely represented by its mathematical analog.
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The transient response of such mathematical models is studied in the

following chapters.



CHAPTER V
TRANSTENT RESPONSE OF MULT1-DEGREE OF FREEDOM SYSTEMS

The methods outlined in Chapter 111 on "Modeling" can be used to
reduce any complicated physical system to an appropriate discrete
system depending on the nature of the problem. The discrete system is
represented by a number of second order ordinary simultaneous differ-
ential equations usually equal to the number of degrees of freedom.

The response of the physical systems can be predicted from the results
of the response analy;(s of single and multi-degree of freedom systems.

Undamped cases are initially studied so as not to lose the impor-

...tance of various parameters in the total response. It is well known

that for a single degree of freedom system for a steady sinusoidal load
the amplitude approaches infinity when the frequency of excitation
cquals the natural frequency. But it can be shown that the maximax
response for a cycle of sine pulse is finite and is equal to M. 1In
fact this maximax respﬁnse is a function of the number of cycles of
loading and approaches infinity for the steady sinusoidal load. But
for a sonic boom type of loading dnly one cycle of sine pulse need be
ahalyzed. For an N.wave (Flgure 17) excitation this maximax response
can be shown to be less than T and equal to 2.16. (31) This is because
an N-wave contains less 1mpuls§ than the sine pulse of the same

maximum amplitude.
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Some acoustical systems can be represented as single degree of
freedom systems. In all these cases the maximax response never exceeds
2.16 for sonic boom input. 1In fact the response will be less because
of the inherent damping in the system as indicated in Chapter 1V.

Most of the acoustical networks are not that simple. Even a room
with a window and open door constitutes a two deéree of freedom system.
The hallways and various rooms in a structure give rise to additional

dogroes of freedom,
Transient Resgponse of a Two Degree of Freedom System

In the case of a single degree of freedom system it is rather
simple to express the maximax response as there is only one variable,
the displacement, once the system natural frequency 1is fixed. But with
two degrees of freedom the method is'not as simple since the number of
factors involved is greater, such as the uncoupled frequencies,

Cuupled frequencies and coupling frequency. A general analysis is
therefore not possible., The response can be found only for some par-
ticular cases. Further the response analysis has to be carried out for
different loading conditions because the masses can be loaded accord-

ing to the mode shapes or a combination of them.

Semi-Definite System

Figure 18 represents a two degree of freedom semi-definite
system. A room with two opposite doors open corresponds to this sys-
tem. The first mode gives zero change in volume and hence zero
pressure magnificatifon., 1t can be shown that for equal and opposite

sinusoidal pulses on the masses the maximax response is always less
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than ™ and approaches it when the mass ratio is very large.

A two degree of freedom cantilever system is shown in Figure 19,
The equations of motion of the above system can be solved using the
l.aplace transform. The solution in the complex jw plane for forces

Fp0t) and Fz(t) on the masses is given by,

. [ 2 2 ]
XI(S) « Fi(s) 1s® t p, (1 4 Fz/rl);

(5-1)
M (52 + p+2) {s: + p-Z)
2 2 2
Fo( + (1 + Fy/F
Xy(s) = 22 = gy 17+ 01 (5-2)

my (s? 4 p,2) (s2+p.2)

where F](s) and FZ(S) = the corresponding transforms

Pl and p, = uncoupled natural frequencies
Py and p_ = coupled natural frequencies and
Py = coupling frequency

Once fl(s) and F,(s) are knowu the expressions for X,(s) and X,(s)
can be reduced to partial fractions and retransformed to give a closed
form solution. The response at anv value of Lime is obtained using
the computer. Table 11 gives the maximax response of a two degree of
freedom cantilever system with identical masses and springs for an
fmpulse and a step input. XX1 and XX2 are the non-dimensionalized
responses, that is

XXl = X} /X . and (5-3)

XX2 = X, /X, (5-4)
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Figure 19. A Two Degree of Freedom Cantilever
System ’
TABLE 11

MAXTMAX RESPONSE OF A TWO DEGREE OF FREEDOM
SYSTEM FOR IMPULSE AND STEP INPUT '

l.oads Accord- Pulse Shape XX1 XX2
ing to

First mode Impulse 2,20 1.54

Second mode impulse 0.95 0.50

First mode Step input 3.95 3.06

Second mode Step input 1.62 0.97

The maximax response for a sinusoidal pulse as analyzed by the
Laplace transformation method is not included in Table 11, The reason
for this 1s the sinusoidal pulse has a frequency term assocfated with

it. When the forcing function frequency equals one of the two natural
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frequencies of the system both the numerator and denominator of the
expression for maximax response go to zero. Even though the solution
obtained by Laplace transformation is in closed form, to evaluate the
expression, increments of time have to be taken and thus the use of a
computer is necessary. Due to the rounding off errors in the neighbor-
haod ot the critical frequency, maximax responseras high as 100 were
obtained which was definitely incorrect. The limit of the expression
for the maximax response when the excitation frequency and the natural
frequency are the same is found by using L'Hospital's rule. The
response for sinusoidal loads can be found from (5-1) by substituting

the corresponding values for F (s) and Fz(s).

XX1(t) = plz[mA Sinwt + BL- Sin p_t € 5yn p_t] for t<r (5-5)
_ P+ P. -

2 ! Bw
XX1(t) = p, [ﬁA{ Sinwt - Sinw(t-1) J 4 ;“ { Sin p.t - Sin p (t-T)}
- 1-‘ .

Cw [ .
+ ;~ i Sin p_t - Sin p_ (t-v for t2r (5-6)

- where T = the period of the pulse

;
{p+2 - p22 (1 + FZ/FI)} 114 F2/Fl)p22 - p_z}

+
(o2 - pﬁz) (p+2 - p_z) (w2 - p.% (p+2 -~ p_

A m
2)

42 - pp? (1 + F2/FD)
2)

B =
(p.f2 - p_z) (w2 - P+

o P2 (L + F2/F1) - p 2
(p+2 - p_2) (w? - p‘Z)

From the results on the two degree of freedom system for rectangu-

lar pulse the maximum occurs at the end of the forced era or in the
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residual era.  The maximum of (5-65 will occur when the torcing function
frequency tquals one of the two natural frequencles, say p_. Under this

condit fon the responge can be written as

3 - 2 |Bw [ ¢ . 1 Cw [o: . B
XX1(v)y = Py 5% 1 Sin p,t - Sin py (t-ﬁw + Eﬁ ibln p.t - Sin p-(t-T)?}

(5-7)
because the contribution by the first term in (5-6) is zero. The con=
tribution by the third term is found by substituting the value for the

constant C and letting v = p_., This results in,

Lt 2 (1 + g%) p+2 - p12 o Sin w o

XX Dgpay = o (5-8)
(1 -a?) (py2 - p.D)
F2 2 2
n = -
- rg)e’ -y (5-9)
(p42 - p.D)

. The contribution to the response by the second term is very small
compared to (5-9) and hence can be ignored. Similarly, if the excita-

tion frequency w equals p, the maximax response will be

2 2
™ 17 = p.c (1 + F2/F1)
XX = [b : ] (5-10)

(p+2 -pD

Table Y11 gives the maximax response of a two degree of freedom
cantilever system with identical springs and masses for sinusoidal
pulse,

The above méthod of taking the limit as the excitation frequency
equals one of the natural frequencies gives only the maximax response.
To get the response as a function of time the two differential equa-~
tfons ot motion were integrated numerically using Runge-Kutta-Adams-

Moulton method. The response curves for the two different loading



cases are plotted in Figures 20 and 21. 1t is seen that the maximax
response cbtained using L'Hospital's rule agrees very well with the

values calculated using numerical integration.

TABLFE 111

MAXTIMAX RESPONSE OF A TWO DEGREE OF FREEDOM
SYSTEM FOR SINUSOIDAL PULSE

Theoretical Maximax Theoretical Maximax
I F XX1 XX 2
| 2
w ™ p_ w = p, w = p_ W= p,
1 1 6.05 0.31 4,80 0.10
! -1 1.59 1.40 1.20 0.45
P 0 3.54 0.87 1.84 0.27
0 1 3.67 0.52 2.84 0.70

From these results it is clear that the maximax response of a two
degree of freedom system {s essentially a function of the difference in
the natural frequencles of the system. The maximax approaches infinity
as p; approaches p_. Since in no physical system can this happen the
maximax transient response of a two degree of freedom system is
bounded. This again can be expected because the transient response of
a single degree of freedom system is bounded. It can also be seen that
the response is most severe when the loads are acting according to the

first mode configuration. This is true for all pulse shapes.
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Two Mass Three Springs System

A two degree of freedom symmetrical system in shown in Figure 22,
Using identically the same method outlined in the previous section

the expression for the maximax response for sinusoidal pulse is found

as,
( 2 pz)“
) . - T
xx1 m 21t P14 L (5-11)
(P12 - p.9)
where
syp = k2 “t k3 + k2 k.j/k1
k2 + k3

The maximax response for a system with identical masses and springs
will be 5.14 when the loads are acting according to the first mode
configuration which agrees with the value calculated using numerical
integration. The response is less than that of a two degree of freedom

cantilever system.
Three Degree of Freedom System

As mentioned earlier the complexity of analysis increases consid-
erably with the number of degrees of freedom because of the many
variables involved. An identical technique i{s used to find the maximax
response for sinusoidal pulse.

The maximax response for sinusoidal pulse is given bv,

2 2 F2 F3 2 2 2 2 2
n [?b pc” (14 FITF) " StPL -Pg P TR P
X1 -
max

2 2 2
(pa - pbz) (pa - P )

(5-12)

where F]’ Fz, Fy = maximum amplitudc of the loads
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Figure 23. A Three Degree of Freedom Cantilever System
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Pis Pys Py = uncoupled natural frequencies

Pas Pps P ™ coupled froquencie;

2, .2 k2 2
Sy =p3° Fpp" (11 P 4 pyy
2 2 F2 F3
s - p p (1 + + )
2 2 ¥3 FI o Fl

Py2» Py = coupling frequencies

As in the two degree of freedom system it is found that the
transient maximax response of a three degree of freedom system is
limited only by the differences of the squares of the natural frequen-
cies taken two at a time. Since in general the three natural frequen-
cies are different the maximax response is limited. Figures 24 and 25
give the response curves for two different loading conditions. The
values of maximax response 8.85 and 2.34 agree well with the values
..calculated using L'Hospital's rule. Once again the response is most
severe when the loads are acting arcrrding to the first mode configura-

tion.

Infinite Degrees of Freedom System

As seen before, the complexity of the problem increases with the
number of degrees of freedom. But when the number of masses is really
large, the system can be considered to be an infinite degree of freedom
system. The system therefore approaches the longitudinal vibrations of
a rod which can be represented by a single linear partial differehtial
equation,

The equation of mot{on for the longitudinal vibrations of a rod is
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Figure 26. Infinite Degree of Freedom System

2% £ 2

;-Z—-iaxzz}-:f (x,t) (5-13)
where )\ = mass density of the material of the bar.

The natural frequencies can be obtained by letting f(x,t) = 0 and
solving the corresponding linear equation. For a bar of length L

“-built-in at one end and free at the other, the natural frequencies are

given by,

Wy = X2 ghere o= | (5-14)
2 L n

The solution to the equation of motion can be written as (36),

u (x,t) = & q(t) Sin (5-15)

me=1,3,5--= 2L
where q = the genefalized co-ordinate.

The expression for q, can be obtained using the principle of virtual

work.
(m-1)/2 t
qp ™ (-1) e B P F(r) sin ™ (por)dr (5-16)
AETm o 2L

where F(7) is the forcing function applied at the free end.
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Response for a Step Input at x = [

For a step input
F(1) = F  for t >0 (5-17)
The solution for u(x,t) is obtained by substituting (5-17) in

(5-16) and performing the indicatéd integration.

(m-1)/2
00
u(x,t) = % (-1) . BF, L 1 - Cos miet | gin mrx
w=1,3,5«-- EAm2n2 2L | 2L
(5-18)
The maximum displacement occurs at x = L,
@ (m-1)/2 .
u(L,t) = L (-1) . BFol {E.- Cos mnoi} (5-19)
“'—1’3 ’5’-' &mzﬂz ZL
When t = 2q,
oo
U(L,t)mx - 16F0L z 1 - 2FOL (5-20)
AEn2 1,3,5--m?2  AE

The maximax response for a step input is therefore 2.0 which is the

same as for a single degree of freedom system.

Sinusoidal Load at x = L

The non-dimensional maximax response at x = L for a sinusoidal

load can be found similarly. The expression for the response is,

@ 8w inWmt - WS
U(L,D = 5 - wSindmt - weSinwt (5-21)
m=1,3,5-- nt“m (u? - wy?)

The response for a cycle of sinusoidal pulse can be obtained by the

principle of superposition as,
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@ 8wy, [:{ .
U(L,t) = T wiSing,t - Slnwm(t~T)} -
w=1,3,5-~ memZ(wl-w_2)

wm{Sinmt - Sinm(t-T)}] (522)

This reduces to the form given in (5-23) because wr = 2T,
@ 8 1

U(L,t) = mfl,3,5~—;%§3 EZE:;;E; {wﬁinmmt - wSinuh(tuT)} (5-23)
The maximum of (523) will occur when each of the terms in the series
is a maximum. It is evident that all the terms cannot satisfy this
condition because in no physical system can all the natural frequencies
be the same. The upper bound of response can be found by assuming that
all the natural frequencies have the same value. The response for this
hypothetical case is

Umax(L’t) .-y (5~24)

Therefore the response of an infinite degree of freedom system for
a cycle of sinusoidal pulse at the free end can never ex;eed 71 which is
also the maximax for a Qingle degree of freedom system.

The above analysis was carried out for a lpad at the free end only.
If there are additional load points which are not too close to the
fixed end the maximax can be found by using the influence coefficients.

The response for a number of load points is,

n n

where n 1is the number of degrees of freedom,
For example, the maximax response for a simultaneous sinusoidal pulse

at the free end and at »x = L/2 will be 31/2.
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Single Degree of Freedom Non-Linear System

In the previous analysis the springs were assumed to be perfectly
elastic and the response was obtained analytically and numerically.
In actual systems the.springs may exhibit a non-linear hard spring tyvpe
load - deflection relationship. The equation of motion of a single
degree of freedom hard spring system is
% + wnzx + ex3 = F(t) (5-26)
where ¢ is the non-linearity coefficient.
This equation was solved for an N-wave for zero initial conditions.
Figure 27 shows the maximax response for different values of €.
It 1s seen that the maximax response reduces with increase in the

non-linearity coefficient.
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CHAPTER VI

RESPONSE OF MECHANO-ACOUSTICAL NETWORKS

TO TRANSIENT EXCITATION

In Chapter V, the transient response of seyeral mechanical systems
were discussed. 1In this chapter the response of acoustical networks
represented by those models will be studied. Damping will be included
because the systems to be treated here are realistic. The pressure
magnifications in the cavities and the stress magnifications in the

pancls will be found for various types of buildings.
Stress and Strain in the Panel in Terms of Displacement

The panel is assumed to vibrate in its fundamental mode. Then,
w = w, Sin x/a Sin Ty/b (6-1)

If a > b, the maximum stresses at the center of the panel is (36),

- =60l 1 |nly (6-2)
Omax -‘QE—fk EZ] 0
where D = flexural rigidity of the panel
h = thickness and

v = Poisson's ratio

The corresponding maximum strain will be

¢ = -T?hwo

max 2 (6-3)
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1t was found in Chapter V that the response for a single degree of
freedom system for a sonic boom load never exceeded 2.16. Hence
mechano~acoustical systems which can be represented as single degree of

freedom systems (Figure 28) are not critical to sonic boom.
Systems Having Two Degrees of Freedom

In the single degree of freedom system the maximum {ransient
response is bounded. In a two degree of freedom system the maximax
response is controlled by the natural frequencies of the system.
Consequently higher pressure and stress magnifications can be expected
in acoustical networks which are represented as multi degree of freedom
systems. Figure 29 shows such types of systems. When a supersonic
aircraft passes over the types of buildings represented in Figure 29
three different loading conditions are possible (Figure 30).

The expression for the maximax response of a two degree of freedom
cantilever system for equal and opposite sinuscidal pulse on the masses
is (5-10),

I‘!plz

(;:o:f2 -p.D

(6-4)
For a given neck area, neck length, panel size the maximax response is
plotted as a function of the cavity volume as shown in Figure 31, It
has a maximum value of 10.23.

The expression for the maximax response of a two mass three spring
system from (5-11) is,

2 20,270 2
n(pl - P17P2 /P+ ) (6-5)
%)

XX1 =

(p-rz - P.
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Figure 28. Networks Which Can Be Represented as Single
Degree of Freedom Mechanical Systems

Figures 32 and 33 indicate this response as a function of the cavity
volume for two different loading conditions. It is seen that the
maximax response for a sonic boom type loading is always less than m
and approaches this value when the volume is very large. Therefore for
a large cavity volume the stiffness of the center spring is almost zero
and the system degenerates into two separate single degree of freedom
systems whose maximax response is ', (Figure 34)

From (6-4) and (6-5) it can be repeated again that closer the
natural frequencies are, greater is the response. The frequencies will
be closer 1f the mass ratio is large. Of the systems shown in
Figure 29, (a), (b) and (d) have mass ratios unity or not much differ-
ent from unity. Their natural frequencies are therefore farther apart.

Systems (c) and (e) can have a large mass ratio because the density of

air {8 much smaller compared to the density of the glass and hence the
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Figure 29. Networks Which Can Be Represented as Two
Degree of Freedom Mechanical Systems
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maximum response will occur in these. A room with an opening and a
window is used to study the critical configuration of an acoustical

network later in this chapter.
A Representative Analysis

So far only sinusoidal loads were considered. This was because it
was rather easier to analyze for a very general case. For an N-wave
excitation an actual system is analyzed using numerical integration.
The system and its model are shown in Figure 35.

The equations of motion for the model are,
mlka + C1§1 + kyxy + ky(x; - x,) = Fy(t) (6-6)
myXy + Coxp * ka(xy = x;) = Fp(t) (6-7)

where m, = mass of air in the neck
m; = equivalent mass of the window
'k2,1 m gtiffnesses of cavity and panel respectively
Cy = damping constant at neck
C, = damping constant of the panel

L, = the equivalent length

e

Damping Constants

The damping constants ¢y and C7 will be found from the theory
developed in Chapter 1IV. C, corresponds to the losses in the ngckf
The effective radius of the neck is 3.16'. The neck is so wide that
the viscous losses are very small and hence can be neglected. The
radiation damping ratio‘is found to be 0.02. C; corresponds to the

loss mechanisms in the panel. A representative figure of 0.05 is taken
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Figure 35. A Representative Mechano-Acoustical System
and Its Model
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for the damping ratio.

The two equations are solved by numerical integration for equal
and opposite N-wave on the masses. The maximum stress in the panel can
be calculated from the center deflection. When the period of the
N-wave was close to the highest natural period of the system a maximum
stress of 841 psi for 1 psf boom is obtained for the undamped case.
The corresponding stress for the damped system is 460 psi. Ah over-
pressure of 2.5 is expected for the commercial supersonic transport.
This will develop a stress of 2102 psi in the window. Taking a factor
of safety of 2.5 (p. 80), the maximum stress in the panel is 5255 psi.
This configuration is not critical because the nominal breaking stress
of plate glass is 6000 psi.

Comparison of the Experimental Results Obtained
from NASA with Theory

Several sonic boom tests were conducted by NASA during the summer
of 1966, over two test houses FE-l and E-2 (34) at Edwards Air Force
Base. The pressure loadings on the window in the garage of test house
E-1, for three different flights, F-104, XB-70, and B-58 are available.
The plan of the garage and the corresponding mathematical model are
shown in Figure 36.

The door in the garage is assumed to be closed because throughout
the discussion in the report by the NASA only single degree of freedom

system is mentioned. The equation of motion will be,

mx + (C, + 'Cz);( + (ky + ky)x = F(t) (6-8)
C1 and Cz are obtained from the representative anafysis. The pressure

loadings and their straight line approximations are given in Figure 37.
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Figure 36. NASA Garage and Its Mechanical Model

. The equation of motion i{s solved numerically and the corresponding ey
calculated for each case. Table TV gives the estimated and measured

strains for the three different flights.

TABLE 1V

MEASURED AND CALCULATED STRAINS
FOR THE NASA GARAGE WINDOW

Flight Measured Strain Calculated Strain
pin/in . pin/in
XB-70 16.0 24.3
B-58 23.0 26.1

F-104 16.0 28.0
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It i{s seen that even though the calculated strains are slightly in
excess of the measured strainsg, in no case the strains exceed even a
fraction of the damage limit for glass. Since the overpressure was:
rdther small in these three cases (only 1.2 psf), the strain levels are
insignificant, may be just equivalent to a slight tapping of the
window. |

The discrepancy between the measured and calculated strdins can be
explained. Although there will be some error due to the straight line
approximation, the main source of error must be in the damping ratio.
The window is mounted in & flexible support which moved with the window
when it vibrated. This contributes considerably to the damping for
which no account is made. Also the flexible ceiling and various tiny
leaks in the garage might add up to the total loss. The actual damping

ratio could not be measured from the response trace of the strain gage

. because it 1s available only for a couple of cycles. 1In any case

theoretiéal values are not far from the measured ones and can be
considered to be an upper limit of response.

The strain gage readings for hundreds of other flights for the
windows in test houses E-1 and E-2 are recorded by NASA, But the
corresponding pressure loadings are not known. The strains calculated
using the pressure readings from the cruciform microphone array (34)
afe almost’twice as great as the measured strains. This is because
‘the windows are located on the sides of the buildings and therefore are
not directly under the flighg path. A suitable factor has to be used
to find the pressure signature near the windows. The maximum strain
measﬁred'is 37.06 u in/in which corresponds to 606 psi thus emphasizing

that the stress level reached is much lower than the workirg stress of
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glass. 1f the door was open, slightly higher strains would have been
recorded because the system then becomes a two-degree of freedom system
whose response is generally greater than 2.16 depending on the system
natural fréquencies. As expléined before the maximax response for a
two degree of freedom system will be greater when the two natural
frequenclies are closer. This means that the mass ratio should be very
large, In the following section several two degree of freedom systems

where the panel stress exceeds the working stress of glass are found.
Critical Acoustical Systems

In a single degree of freedom system the maximax response to
N.wave excita;ion is limited to 2.16. This corresponds to an equiva-
lent design static load of (2.16x2.5x2.5) 13.50 psf for a 2.5 psf boom.
This is much less than the design wind load (30 psf). Therefore fail-
ure of the glass panels cannot be expected in such acoustical systems
which can be represented as single degree of freedom mechanical
systems. In a multi.degree of freedom system the response can take
any value depending on the natural frequencies. 1In Chapter V it was
shown that the maximax response of a multi-degree of freedom system is
nét a function of the number of degrees of freedom but only of the
natural frequencies. 1In order to find a representative system which
has the worst response any multi.degree of freedom system with at
least two of its natural frequencies nearly the same can be studied.
Since a system having Ewn degreés of freedom is che‘easiest one to
analyze for a general case, the critical two degree of freedom practi-
cal system will be found.

Again, even in two degree of freedom system it is difficult to
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analyze for N-wave in general. The practical acoustical systems which
have the greatest response for sinusoidal pulse can be found from the
expressions developed in Chapter V. Once a critical system for
sinusoidal pulse is obtained, the system for N-wave is obtaincd by
slightly modifying the parameters.

In a two degree of freedom system with a cvcle of equal and
opposite sinusoidal pulse on the masses the expression for the maximax

response is,

2
TPl (6-9)

SO

(P+2 -p.2)

2 2

P+ - P. 2

This will be large if large.

is small and p,
Table V gives the critical configurations of several mechano~
acoustical systems and the damped and undamped stresses in the window
for a sonic boom load of 1 psf. It is found that for a window of
size 10'x8'x%" the damped stress is 1400 psi for a 1 psf boom. This
corresponds to a magnification factor of 7.0 and the equivalent design
static load on the window will be (7.0 x 2.5 x 2.5) 43.8 psf. So a
window designed for a design wind load of 30 psf is likely to fail to
a sonic boom of 2.5 psf if the components are properly tuned. Greater
magnification ratio than 7.0 can be obtained by reducing the neck area
and increasing the window size but these will be only of theoretical
interest because all the practical sizes have been considered in
Table V.
It is thus found that a properly tuned acoustical system which
consists of a door opening and a window is critical for a 2.5 psf boom,
The equivalent design static load in this case can be as large as

44 psf. For a room with two windows (identical windows or not) the
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TARLE V

MAXIMUM STRESSES IN PANELS
FOR A 1 PSF BOOM

nf Panel Size Lﬁicth lﬁizk Volume Maximum Stress psi T
3 2 C.Ft. Undamped Damped?

Ft.  Ft.
3.07  15'x15 x1/2" 1.0 10 10000 852 ba2 0.28
1.74  15'x10'x3/8" 1.0 10 8000 1150 842 0.24
3,52 lbxléoxl/2e 1.0 10 8000 855 608 0.26
4,08  13'x13'x1/2" 1.0 10 6000 789 569 0.22
3.60  12'x12'x3/8" 1.0 10 8000 1170 869 0.24
4.38  12'x10'x3/8" 1.0 10 4000 775 570 0.20
4.87  12'x8'x5/16" 1.0 10 4000 1210 912 0.18
4.31  10'x10'x5/16" 1.0 Lo 6000 1250 1000 0.20
3.50  10'x10'x1/4" 1.0 10 8000 1540 1200 0.24
5.52  10'x8'x5/16" 1.0 10 4000 1200 580 0.16
A 10 x8 x1/4v 1.0 14 9000 1720 1400 0.20
5.4 81x81x1/Ln 1.0 10 4000 230 113 0.16
6.2 81x7 x1/4n 1.6 18 9000 1380 1155 0.14
7.18  6'x61x3/16" 1.0 10 2000 1310 1150 0.12
10.4  5'x5'x3/16" 1.0 10 2000 1140 1030 0.10

*27, at the door opening, 4% at the panel.
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equivalent design static load never exceeds 30 psf for a 2.5 psf boom.
It does not necessarily mean that no failure will occur in such systems

because the fatigue effect on glass has not been taken into account.
Failure of Glass

Glass is a brittle material and failure occurs abruptly without
yield or permanent deformation. Failure is usually due to the tensile
component of the Qtress exceeding the ultimate strength of the glass.
Glass is much sironger in compression than in tension. The variation
of breaking stresses in specimens of glass is much greater than for
metals. It is because the fractures of glass generally originate in
small imperfections or flaws the large majority of which are found on
the surface. Any bruise or accidental contact with any hard body will
produce on the surface of glass very small cracks which may be invisi-
ble even under a microscope. But these micro-cracks act as stress
raisers and the stress concentration factor can be as high as 100, 1In
the case of metals because of their ductility the material near these
point of concentration yields, thus alleviating the increased stress.
But in glass there is no such relief in stress. This is the reason
why there {s so much variation in the breaking stress of glass. A
factor of safety has to be included in estimating the design load.

A factor of 2.5 is recommended for all window glasses (25) and this
reduces the probability of failure to less than 1%,

Little work has.been done on the fatigue of glass.‘ This effect
will be mofe important when a supersonic aircraft flies over an area
every half houfr which might happen in a few years. The preliminary

work available on the fatigue of glass indicates that it is entirely
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different from that of the metals. There is little difference in the
stress-time curves of glass under static loading and cyclic loading
with complete stress reversal, if the maximum stress and time duration
are the same (1). ‘This might indicate that for a short period loading
such as the sonic boom, fatigue effect is not much pronounced. But

further work 18 necessary to precisely determine the effect of fatigue.



CHAPTER VI1
NON-LINEAR LARGE DEFLECTION THEORY OF PLATES

In the preceding chapters the deflections and the stresses of the
panel were found using the linear small deflection theory. This theory
is valid strictly for deflections in the range (36},

0 <w/h £0.6
where w = deflection at the center and
h = thickness of the panel

For example, a simply supported panel of size 5'x5'x%" has a
central deflection of 0.105" for a 4 psf static load. This corresponds
to a w/h ratio of 0.42 and is within the above mentioned limits. Hence
linear theory {s valid for this case. But now consider a dynamic load,
say an N-wave, The maximax response of the model of the panei will be
2,16 and the center deflection for a 4 psf boum will be 0.2277. This
corresponds to a w/h ratio of 0.90 and hence non-linear theory has to
be used. Even the non-linear theory has certain restrictions. For
w/h >> 1, membrane theory has to be used. Table VI shows the stress
conditions in plates with small, large and very large deflections.

In the first section of this chapter static analysis of plates
with large delection is carried out. 1In the secona section an approxi-
mate dynamic analysis is made using only the fundamental mode contribu-

tion.

82
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TABLE VI

LATERAL STRESSES 1IN PLATES

'Small Deflection Large Deflection Membrane

“Theory Theory Theory

Stress conditfon Bending Bending and Membrane
membrane

Valid range Odw/hs 0.6 0.6<w/h< 4 w/h >> 1

Static Analysis of Plates with Large Deflections

The equations of bending of a plate when stretching of the middle
plane is taken Into account can be found in any advanced text on Theory
of Elasticity (36)., These are the so-called Von Karman large deflec-
tion plate equations and consist of a system of two fourth order non-

linear partial differential equations. (7-1 and 7-2)

[ 22w 2 22w 3w
viF = E | ( ooy ) " oxZ 32 (7-1)
o _hlp, 2%  2%w 3% 22w | o%F 3%
9w == + 7 ° 2 + 2 2 = - . (7-2)
Dih oy dx dxc dy 3xdy  ¥xdy

. a/J . alo N Pl
where V? = ( ax ax2ay2 ay’ )

p = lateral loading
h = thickness of the panel

F = stress function such that



Ny Ny, ny = normal and tangential loads given by
2 2 2

Nx ] hé—ﬁ . Ny = h9F and ny ',~hﬂé_i .
dy? ax? oxdy

The solution of (7-1) and (7-2) for a general case is unknown.
Some approximate solutions are available for a few simplifiecd cases.
The two non-linear equations are solved here using the method developed
by Katiser (14). Even though this method can be extended to rectangular
plates, for simpiicity only square plates are considered. Equations
(7-1) and (7—25 can be reduced to four second order linear partial
differential equations and a non-linear differential expression by
introducing the following non-dimensional quantities.

u=x/a

v e yla

p* = p/E+(a/h)%

¢ = F/h’E

{ = w/h

The reduced equations are,

2 2 2 Y
2 3°¢ 3¢ SIS ‘
VS"( )“ 2“ 2 :

dudv 3u v :
Vzé m g

22 d2r 2% 32 2% 32 &
D) . = pG (7-3)

& ™
dudv  Bdudv auz BVZ avz auz

M = 12(1 - u2) (p* - pé)
V2L =™ M

The equations are to be solved one after another in the order in

which they appear. A deflection surface has to be assumed initially
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p—2 0 —

Figure 38, Dimensions of the
Plate Used in
Deflection
Analysig

and this is compared with the result obtained from the last of the
equations (7-3). 1If the difference is considerable a new deflection
surface is asgsumed and the procedure repeated until the results con-

verge to a solution.
Results of the Analysis

Equations (7-3) are solved using the finite differences technique.

Table VII gives the stresses and deflections in panels calculated
using linear and non-linear theories. Figures 39 and 40 show the
variation of load and stress as a function of deflection for a panel of
size 100" x 100" x %". It can be concluded from the figures that the
load-deflection curve of the panels has a non-linear hard spring
characteristic. The stresses and the deflections obtained from the

non-linear theory are less than the corresponding values from the
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_TABLE VII

COMPARISON OF THE STATIC DEFLECTIONS AND STRESSES

OF PLATES USING LINEAR AND NON-LINEAR THEORY

88

Linear |Non-LineafdLinear Non-Linear Theory
Center Center Max. BendingMembrane; Total
Panel Size Load }DeflectioniDeflectiorStress (psi) |(psi)
(inches) | (inches) | (psi)
1 psf .000323 000107 14.3 12.3 - 12.3
2 psf .000646 LOO0H15 28.7 24,6 - 24.6
207 %200 xh "
3 psf . 000969 .000923 43.0 37.0 - 37.0
4 psf .001292 .001230 57.4 49.3 - 49.3
1 psf 00516 00492 57.4 49,3 .7 49.4
2 psf .01032 .00984 114.8 98.5 .6 99.1
40 x40" xg"
3 psf .01550 01475 172.2 147.7 1.3 149.6
4 psf 02064 .01967 229.6 196.8 2.4 199.2
1 psf| .02615 | .02486 [129.1 {110.6 1.7 |112.3
2 psf .05230 .04942 258.3 219.3 6.7 226.0
6():16011”};1'
3 psf .07845 07347 387.4 324.6 14.7 339.3
4 psf . 10460 .09662 516.6 425,2 25.4 450.6
I psf .0826 07719 229.6 191.9 9.2 201.1
2 psft .1652 . 14691 459.2 358.5 32.7 391.2
80" x80" xkM
3 psf .2479 .2070 688.8 493,2 63.7 556.9
4 psf| .3304 .25884 |918.3 [601.0 | 97.4 |698.4
1 psf .2018 . 1746 358.7 269.9 29.3 299.2
2 psf 4036 +29904 707.5 434.6. 81.7 516.3
100" % 100" x4
3 psf .6054 3915 [1076.2 537.4 133.5 670.9
4 pst .8072 .4658 1434.9 608.2 181.7 789.9
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linear theory.
Membrane Theory

When the deflection of the panel is much greater than the thick-
ness the bending rigidity approaches zero and all the load is resisted
by membrane stresses. The theory developed in the previous section can
be used by setting D = 0. Since iteration process is involved again,
the simplified membrane bending theory developed by Timoshenko (36)
will be used heré. From (36), the center deflection of the membrane
and thé maximum membrane stresses for a simply supported square mem-

brane are given by,

Wy m0-802a - [9 (7-4)
2Ea2

o =0-396 1 [9Fa (7-5)
h

where q = lateral pressure loading
2a » gide of the membrane
The load-deflection and stress-deflection curves are plotted
(Figures 41 and 42) for a membrane of size 180" x 180" x %". As in
the case of the non~linesr theory, the load-deflection curve exhibits
a non-linear hard spring characteristic. Further, the membrane stress-
es are less than the bending stresses calculated using the linear

theory.
Transient Response of Panels with Large Deflection

An approximate analysis of the transient response of panels with

large deflection is made by deriving an equivalent single degree of
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treedom model. Herrmann and Chu (5) in their analysis on steady state
response of panels with large deflections find that the mode shapes can
still be taken sinusoidal if the edges are simply supported. The fun-

damental mode 1s therefore given by,
W, Sin Mx/gq Sin My/y (7-6)

The equivalenc mass can be obtained by equating the kinetic energies

as,

meq = m/b (7-7)

The equivalent stiffness is found by equating the potential
energies. The load-deflection curve for thin panels and membranes is
non-linear and can be represented generally as,

F = p.ab = kw -+ (7-8)
where k = stiffness (in general different from the corresponding value
for linear theory)

M = non-linearity coefficient

The potential energy is given by,

wo b a
P.E. = Jfff p Sin Mx/a Sin My/p dx dy dw (7-9)
0 00
2 4
"é'z' o 4 (Mo (7-10)
n -2 4

Under the assumptiod that there exists a keq and a Keqs the potential
energy of a single degree of freedom non-linear (hard spring) system

is
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2 w. b

w
Ky g g (7-11)
eq™ eq—,

This results in,

keq = 4k/T% and (7-12)

2
Meq = “H/" (7-13)

The equivalent area obtained by preserving the static deflection is,

Aoq = /M2 (7-14)

The equation of motion for the model for an N-wave load is,

.o 3
x + l‘é H“f& -i_.ab(l - E_E)po (7'-15)
n {m L " T

The stiffness k and the non-linearity coefficient )i can be
obtained for different panels from ﬁheir load deflection curves.
(Figures 39 and 41). The corresponding stress is obtained from the
stress~deflection curves (Figures 40 and 42)., Table V1II gives
the results of the dynamic analysis for small panels (large deflection
theory) and Table 1X gives the results for large panels (membrane
theory.)

The stresses predicted by the non-linear theories are much less
than the stresses obtained from the linear theory. Hence it can be
concluded that the dynamic analysis carried out using the linear

theory gives an upper bound for the stresses.



STRESSES

TABLE VIII

94%

IN PANELS USING LINEAR AND NON-LINEAR
THEORIES FOR N-WAVE LOADING

Load. Panel Size

Deflection (in.)

Total Stress (psi)

Linear Non-Linear Linear Non-Linear ¥/h
201 %201 Xy 1 134x10™2 128x%10~3 59 47 5%107°
1 psf 60"x60"xg" 91.5x10"3  85.7x10"3 415 375 0.34
100" x 100" xk " 0.433 0.350 760 570 1.4
TABLE IX
STRESSES IN PANELS USING LINEAR AND MEMBRANE
THEORIES FOR N-WAVE LOADING
Deflection (in.) Total Stress (psi)
Load Panel Size Linear Membrane Linear Membrane w/h
100" 100" xk" 0.433 0.356 760 310 1.4
1 psf 120"x120nxy" 0.917 0.446 1000 345 1.8
180" %180 xk" 5.300 0.783 1925 455 3.3




CHAPTER VIl

CONCLUS TONS AND RECOMMENDATIONS

The following conclusions are made from this study:

1.

The mathematical model with a mass m/4, stiffness (ﬁz/&)k,
dampiﬁg'ratio {, and area (4 /m2)A represents exactly the
fundamental mode response of a panel of mass m, stiffness k,
damping ratio { and area A. The natural. frequency (of the
fundamental mode) and the static deflection are presexrved in
the above model.

The radiation losses predominate in a wide-mouth resonator and
the viscous losses predominate Iin a narrow-mouth resonator.
Hence, in buildings the main damping mechanism at an open door
{s radiation losses {f there are no leaks.

The acoustic radiation damping of a stmply supported panel

is independent of the thickness for a uniform damping pressure
and is a function only of the panel sspect rario. The damping
ratio 1s a minimum for a square panel. The representative
acoustic radiation damping ratio of a panel can be taken as
0.001. But, the joint-friction and structural damping of a
window are much greater than the acoustic damping.

The representative damping ratias.for a room with an open door
and a window will be 2% at the door and 3% at the window.

This forms the lower bound for the dampxng~ratios.
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Tne maximax response of mecha-ical systems .s not unbounded
wnen the excitation frequency equals oric of the natural
frequencies. This maximum is a functiom ¢f the product of the
differences of the squares of the natural frequencies of the
system.

The severest resbonse’in mechanical systems occurs when the
loads are acting in a configuration corresponding to the first
mode. This means, identical loading conditions on the masses
for a éymmetrical system, Since the sonic boom loading corre-
sponds to equal and opposite loads on the masses, the response
is less gevere.

The response of a symmetrical two mass three spring system is
always less than 2.16 for sonic boom luading. 1t approaches
this value wheu the stiffness of the center spring is very
small. The network which corresponds to the two mass three
spring system will be a room with two windows. The maximum
response of the windows (if they are identical) for a sonic
boom loading is 2.16 which corresponds to an equivalent design
static load of 13.5 pst for a 2.5 psf boom. Siree windows are
generally designed tor a 30 psf wind load tnis coniiguratlon'
i1s not critical for sonic boom excitation.

The maximax response of a two degree ot frecdom centilever
system can be much greater than 2.16. The exzct value s a
function of ﬁhe uncoupled natural frequencies and the mass
ratio. This system will correspond to a room with aa ¢pening
and a window. A magnif;cation factor of 6 10 is obtained for

a window in practical acoustical systems. TFor a parel of s.ze
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10'x8 ' x%" a stress level of 1400 psi is obtained for a 1 psf
boom. This will correspond to an equivalent design static
load of 38 psf for a 2.5 psf boom. Hence windows .in such
systems‘which are properiy tuned yield greater stresses than
windows in ahy other system.

The non-linear theory for the paneis predicts a hard spring
type load—&eflection characteristic and the maximax stresses
are less than the corresponding values obtained from the
linear'theory. Hence the stresses obtained from the linear

theory represent an upper bound of response.
Recommendétioqs

The following recommendations are made for further study:
Since the variation of the breaking stress in several glass
panels of the same type is considerable the failure of a
plate glass window has to be aralyzed statistically.
Experimental results for the response to sonic boom can be
obtained'by simulating sonic booms in buildings of different
size and shape.

The noaninear transient response of multi-degree of freedom
systems needs to be studied.

Though the stresses in the window do not exceed the working
stress for the glass the possiblity of failure due to fatigue
has to be studied. A study of the number of cycles that could
exceed the endurance limit for a given sonic boom type can be
made.

The glass may fail at a much lower stress than the working
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stress because of microcracks and other metallurgical flaws
which act as stress-raisers. The flow and tracture of glass
needs to be studied to understand the failure of glass panels.
It has been found in literature on glass that it is possible
to increase the working load on glass by pre-compressing it.
Pre-compression technique has advanced to such an extent that
glass which can resist a stress of 100,000 psi are being made.
A study of the suitability of using such glasses in apartment
and suﬁermarket windows will be interesting and worthwhile.
The transient response of a panel coupled to a cavity has
defied exact analysis so far. This can be investigated and
the validity of the single degree of freedom assumption for
the panel can be verified.

The transient response of a panel taking into account addi-
tional symmetrical modes is worthwhile because the contribu-
tion by the symmetrical modes can be considerable for stress.
The stability of the non-linear equations used in the large
deflection theory should be studied on a parameter basis so
that those equations can be modified suitably to arrive at
quick results.

In addition to glass breakage, the failure due to sonic booms
may be in the form of nail popping and plaster cracking. The
exact nature of these is difficult to analyze but approximate
predictions can be made.

The transient response of a row of panels needs to be studied
because most of the supermarket windows are of this type. The

one which failed in the sonic boom test in Oklahoma City had
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eight windows in a row.

It was assumed that the wave length is very long compared to
the.dtmensions of the building. Supermarkets and modern air
terminals are almost the same size as the wave length. Exact

analysis using the acoustic equation needs to be carried out.
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APPENDIX A
NUMERICAL INTEGRATION

Almost all the ordinary differential equations appearing in this
thesis were solved using numerical integration. The numerical integra-
tion has a greét advantage (which compensates for {ts being a little
less accurate) over the conventional Laplace transform method. In
the latter method when the excitation frequency equalléd one of the
natural frequencies of the system erroneous results were obtained for
undamped cases. Analytically it was shown that this could not happen
and the maximax approached a definite value for a particular system.
This value agreed very well with the result obtained from numerical
integration.

Numerical integration was performed using the Runge-Kutta and
Adamgs-Moulton methods. The Adamgs-Moulton method has a better accuracy
because it is a predictor corrector method and the solution can be
iterated. Since it is not a self-starting method Runge-Kutta method

is used to calculate the necessary values for the Adams-Moulton method.

Runge-~-Kutta Method

There are several orders of Runge-Kutta method depending on the
accuracy needed. The error for even the first order method is 0(h3)
which is less than the 0(t2) for the Euler method. The method gener-

ally used 1ig the fourth-order Runge-Kutta method.
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The Runge-Kutta method is derived by assuming a particular form
of the solution and equating it to a corresponding Taylor's series
solutfon. The number of terms taken in the Taylor's series depends on
the order of the method to be derived. The coefficients of the assumed
solution are then obtained by comparing the coefficients of like powers
in both solutions.

For an equation of the type,
4y A-1
P £(x,y) (A-1)

with y(xo) =X the fourth-order Runge-Kutta method gives

. ,
Yol = Vo t P’ El + 2Ky + 2Ky F K{‘ (A-2)

where K, = hf(xn,yn)
Ky = hf(x, + h/2, Yo t KI/Z)
Ky ™ hf(xn + h/2, y, + Ky/2)
Ky = hf(xy + h, y, + Ky)
h wm= gtep size

The total truncation error of the Runge-Kutta method is O(hs).

Adams-Moulton Method

In the Runge-Kuﬁta method every time the derivatives at four
different points have to be calculated. The multi-step formulas
require only one derivative at each step. This results not only in
saving computer time but more accuracy because the solution can be
iterated. But the multi-step mechods are not self-starting and Runge-
Kutta method has to be used to start the process.

The predicted value from the Adams-Moulton method is given by,
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h N t
Vg+1 =y, +'EZ [ES £ - 59, T 37 fn-2 -9 fn_;] (A-3)
L TN o
Then fn+1 can be computed because
o 0 |
Fabt = EO V) (A-4)

The corrected value is given by

1 b - 0
yn’~f1 -y + 2% 9 f(xn+l, yn+1) + 19 fn -5 fn-l + fn_;] (A-5)

th

The procedure can be repeated and the k  corrected value will be

ko h_ k-1
R Al £0x L q» yml) +19f -f ,+ fn_a (A-6)

The four starting values needed for this method are supplied by
the Runge~Kutta method.

1f the equations are of higher order or simultaneous, they can be
reduced to a number of first order equations and the above procedure
can then be used. This method will solve any ordinary differential
equation linear or non-linear. A computer program is available with

the computer center of Oklahoma State University.

Example
Let the two equations required to be solved be,
myx) + Cpxy +kqGxy - xp) = Fy(6) (-7
mé! + Cziz t koxg + ky(xy « x;) = Fp(t) (A-8)

These are written in the form

Cox, k
11 - Siexy - xp) + T1CE) (A-9)

0.’
X, % .

1
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.x‘z o= -szz - k2x2 - }i_l.(xz - "1) + FZ(‘:) (A-].O)
m2 m2 m2 m2

This is a system of ;wo second-order equations and can be reduced to
four first-order equations using state variables,
Let

y1 = ¥y

Y =%

y3 = x, and

Yy T X2

Then the four first-order equations are,

Y1 = Y2
;2 = . C1y2 . ﬂ(yl - y3) + Fi(t)
my my my (a-11)
vy =
3 4
;,:-S_Z_Z.l..‘_-.‘.(..z.z}.-_..l-(y -y1)+].r..2_(_§l
4 m2 my 2 3 m2

These four first-order equations can then be solved if the four

initial conditions are known.



APPENDIX B

FINITE DIFFERENCES TECHNIQUE FOR

PANELS FOR STATIC LOADS

The solutions of the plate bending equations for small and large
deflection theories using the finite differences technique are dis-

cussed here.
Small Deflection Theory

The equation of bending of a plate using small deflection theory
is,
viw = q/D (B-1)
If a square plate is divided into a mesh of size 8 x 8, only ten
points have to be considered because of diagonal and rectangular
symmetries.
Equation (B-1) can be reduced to two second-order Poisson equa-
tions. |
v4F = q/D (B-2)
vy = F (B-3)
The finite difference form of (B-2) (taking the forward differ-
ences) 1is
(B-4)

F 4 F

i_1‘_1'1- 1,3 + Fi_l’J + F1,5+1 + Fi.j-l = q/D

The equations for the ten points in the mesh yield a system of equa-

tions the solution of which yields the value of F at all points.
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Once F5 are known (B-3) is solved in an identical fashion except for
the fact that the right-hand side {s replaced by‘F. Usually it is very
easy to solve a linear Poisson equation by the finite differen;es
technique. This is one of the reasons for reducing the non-linear
partial differential equations of the plate with large deflection into

four Poisson equations and one non-linear differential expression.

10 1d
6179 c
3/5! 8 b
a
1 2 4 7

Figure 43. Finite Difference Mesh
for a Square Plate

Large Deflection Theory

The finite differences form (taking forward differences) of

equations 7-3 is
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655;,j + 63 %1, <63vti,j)z - éﬁci,j 53C1,j (B-5)
62e, y* 820, PR (B-6)
AT R T R A TR LA
(B-7)
65“1,3 + 52“1 e 12(1-u2) (>* - oo - (B-8)
53«:1,3 + ﬁéci,j -My g (B-9)

where ' = s/n2

M' = M/n2

Initially the values of { at the ten station points have to be
assumed (for n = 4). As an initial guess the values given by the
linear theory can be taken. Once the deflection surface is known
(B-5) becomes a Poisson equation. But it cannot be solved explicitly

'S are obtained in

for si , Sé etc., because of the boundary terms. s
terms of the values at the boundary. These values of s' are
substituted in (B-6) and using the boundary conditions

s;H =28, | (B-10)

(itl is a boundary point) (B-6) can be reduced to a linear Poisson
equation of the type discussed in the linear theory. The solution of
this yields ¢. From the non-linear algebraic expression (B-7), pz
can be calculated because { and ¢ are known. (B-8) and (B-9) are then
reduced to the linear Poisson equation. The solution of (B-9) yields
the deflection surface {. This is compared with the assumed { and
suitable modifications are made and the procedure repeated until

desired accuracy is obtained.
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A SURVEY OF FUNDAMENTAL FREQUENCIES AND DAMPING

FACTORS OF LARGE PLATE GLASS WINDOWS

A survey of representative damping factors and matural frequencies
of windows was conducted for approximately one hundred storefront windows
in Stillwater, leahoma. The windows were excited manually at the center,
suddenly releasing as a recorder was started. The displacement history
of each of the windows was measured by a piezoeléetric wmicrophone
coupled with a chgrge amplifier having a high input impedance. The
microphone was used for the reason that any other type of sensor would
add damping to the system. While in many instances this affect would be
negligible, the microphone also affords the fastest way of measuring the
transient response of a large number of windows without extensive set-up
time, The linearity of the microphone system used was tested in the
laboratory on an especially constructed cantilever vane-type device.
Since the microphone was generally employed at a distance of not over
1/2 inch from the window, the particle displacement at the microphone
was very close to that of the window. Actual displacement values were
not needed since only the natural frequency and log decrements were
determined from the recordings.

Of the windows tested, approximately half were of little use since
the wave form was not a true exponential decay. The reason for this is
that many windows were mounted in rather flexible mullions and it was
impossgible to excite a single window without exciting the adjacent ones.

Very often this arrangement resulted in the presence of beats in the
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recording making the measurement of single mode damping impossible to
obtain.

Since the windows were driven to only a very small amplitude, very
little nonlinear response was noticed. The frequency measured during
the first few cycles was generally the same as that measured at the end
of the record which in some instances was three seconds long. The log
decrement was measured during the first five cycles since amplitudes
could be more accurately measured on this part of the record than any
other. 1In general the envelopes of the wave forms are not true exponen-
tials and for this reason it must not be assumed that only viscous
damping is present. However, it is felt that the measurements which
were taken give a good approximation of the range of damping factors to
be encountered.

There is no apparent correlation between different types of sash
materials, thickness of glass, aspect ratio size, natural frequency or
damping factor. However, a certain range of damping factors
emerged and this information would be useful to determine the upper and
lower bounds of damping factors in representative windows. The measured
natural frequencies compared very favorably with the calculated frequen-
cies for simply supported plates.

The measurable data obtained from the tests are shown in Table I.
The original records were numbered from 1 to 99 and a skip in the number-
ing indicates the calculation was not made due to the factors mentioned
above. The range of damping factors extended from .0l to .06. Since
very few windows were of the same size and aspect ratio, it is useless
to attempt an? type of statistical analysis for this set of data. The
average damping factor for the 46 windows under consideration is 0.0284.

The 46 test points are shown as a matrix on Figure 1 with coordinates of
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measured damping factor and measured natural frequency. No interpre-

tation can be made of this plot since, for example, both the highest and

lowest measured values of damping occur at the lower natural frequencies.
Figure 2 is a plot of damping ratio as a function of aspect ratio,

for various thicknesses of glass. There is no apparent correlation,

but this is to be expected since mechanical friction is predominant.
Attempts at statistical evaluation were somewhat unrﬁyarding.

Figure 3 is an approximate plot of probability density for}the damping

ratio of all the windows. No significance should be attached to this

plot other than to note the relatively narrow spread of values.



TABLE I

h - thickness; a -~ horizontal dimension; b - vertical dim.

fc - calculated frequency; fm - measured frequency

{ - damping factor, (average for 5 cycles)

Record h" a" b" | a/b fc fm g
1 .25 76.8  79.3 .97 7.7 7.2 .036
5 " 121.5  69.8 1.74 6.5 5.9 .0344
13 " 58.3 94 .62 9.7 9.5 .0251
15 " 60.8 89 .68 9.4 8.6 .0224
16 " 59.6 89 .66 9.7 9.2 .0192
19 .312 73.8  59.6 1.23 13.9 11.8 .0196
20 " 73 59.8 1,22 13.9 12.9 .0158
21 .25 83.4  96.5 .86 5.9 5.6 .0273
22 " 83.5  96.5 .86 5.9 5.5 .0333
24 " 75.3 88.3 .85 7.2 7.2 .0515
27 " 125.6 97 1.29 4.0 4.6 .0261
28 " 74 86 .86 7.5 7.7 .0297
31 " 77 112.6 .68 5.9 6.8 .0438
33 " 75 87.5 .85 7.3 7.2 .0217
35 " 56 78 .71 11,4 10.8 .0288
45 .312 91.6 83.3 1.09 7.7 6.4 .0157
52 " 78 67.4 1.15 11.4 9.5 .0241
53 .375 100.8  69.3 1.45 11.1 8.4 .0278
54 .25 50.3  68.5 .73 14.5 11.1 .033
55 .312 66 77 .85 9.5 9.1 .0168
56 .375 66.3 77.3 .85 14.3 11.4 .0139
57 312 115.3 93 1.24 5.6 5.4 .017
58 " 114.8 93 1.23 5.6 4.6 .0206
62 " 95.3 70.6 1.34 9.2 12,0 .033
63 .375 52.5 70.6 20.4 7.5 .0585

.74
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Record h" a" b" a/b fc fm C
66 375 104 76.6  1.35 9.5 8.6 .0301
67 .312 80 90 .88 8.2 7.0 L0425
68 .25 78 90 .86 6.8 7.3 .0172
69 g 95.4 100 .95 4.9 5.7 .0249
70 .312 10L.5 100.5 1.0 5.7 4.4 .0245
71 .25 62.5 100.5 .62 8.4 7.5 .0187
73 " 73.8  100.8 .73 6.7 6.5 .032
74 .312 51.5  100.5 .51 14.1 11.0 L0403
75 .25 . 92 87 1.05 5.9 6.4 .0131
76 .312 89 87.8 1.0l 7.6 6.4 .0103
78 " 74.5  77.5 .96 10.2 7.5 .0436
79 .25 87 97.5 .89 5.6 5.0 .0298
80 " 87 98 .88 5.6 4.0 . 044
81 .312 95.3  80.8  1.17 7.9 6.1 .06
82 " 95 8l.4  1.16 7.9 6.6 .0236
85 .25 101.5  90.5  1.12 5.2 4.9 .0108
86 .375 80 83.5 .95 10.8 8.6 .0192
87 .375 80.9 84 .96 10.7 8.3 .032
88 .312 85.3  93.4 .91 7.5 5.6 .0324
89 " 85.3  93.3 .91 7.5 5.8 .0234
98 " 59 105.8 .55 11.1 5.5 .0392
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Figure 1. Damping Ratio as a Function of
Measured Frequency
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ANALOG COMPUTER STUDIES

A series of analog computer runs was made to determine the displace-
ment history of a hypothetical building having one large window and a
flexible flat roof. The digital computer analysis points to the conclu-
sion that the most critical response situation is that in which a window
is mounted in a cavity having a large opening. This is probably of only
moderate concern since very few buildings have large permanent openings.
The second most critical case, therefore appears to be the window -
flexible ceiling configuration. The reaction between a large window,
and a small one, in a rigid cavity is of less concern, due to the small
range of possible mass ratios.

The properties of the test configuration are as follow:

Window size 11 ft. x 11 ft.
Window thickness .25 in.

Window mass 5 slugs

Roof area 5,000 sq. ft.
Ceiling height 20 ft.

Ceiling mass 300 slugs

These values were chosen because the limiting size of .25 inch glass is
generally accepted as 11 fr. x 11 ft. although this is in violation of
many building codes. Thus, the window chosen has the lowest natural
frequency, 2.7 cps of all commercially available windows.

The mass of.;he roof-ceiling structure was chosen to be representa-

tive of the typical unit roof structure and the uncoupled natural fre-

'quéncy;Was assumed to be as low as physically realizable, about 1.9 cps.



This assumption puts the two coupled natural.frequencies as close to-
gether as possiblel

Damping factors for both the ceiling and the window were selected
from values taken from actual vibration measurements. The duration of

the "N" wave was varied to find the maximum window response. The pressure

level was taken as 1 psf and was applied in two configurations:

(1) The roof and window are struck simultaneously.

(2) The window is shielded from the shock wave and the
roof, only, is struck.

;t may be possible for first mode excitations to occur but it is unlikely
since the window would be pulled outward by negative pressure while the
ceiling is pushed inward.

The basic differential equations modeled by the computer, after

the lumped parameter equivalent elements were calculated, are as follows:

300X, + CiX, + 43,000% + 60(2025X - 49X,) = Fy (t)

Yy

5%, + CoX, + 1440X, + L1.45(49K, - 2025% ) = Fp (t)

. where

,
Ko
i

Displacement of center of ceiling

&
[

Displacement of center of window

i

F, (t) Equivalent total force applied to the roof

F, (t) Equivalent total force applied to the window

fi

It

Ci, C, Damping constants
All units are in feet
The restoring force terms in parenthesis in each equation represent the

acoustical coupling between the ceiling and window, but are not equal

since there is a large differential in area.



2y,
The greatest response of the window, X,, was found to be -.12 ft. o;
~1.44 in/psf as shown in Figure 1, corresponding to a T of .25. It may
be of interest to note that the absolute maximum occurs roughly one
period after the end of the forced era, which indicates that there is a
beating between the ceiling and window. The deflection corresponding to

a 2.5 psf boom is 2.5 x 1.44 = 3.6 in. The magnification factor is

approximately equal to

XK 1440
- = .12 _75— = 3,52

when referred to the infinite baffle solution.
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